

翼強度とBearing Force/Moment

Time history of blade stress G2

水面

元大阪大学 野澤和男

緒言

サーフェスプロペラ(水面貫通型プロペラ: surface piercing propeller、 SPP)の翼強度設計や起振力となるBearing Force/Momentについて 概説する。SPP船の推力はプロペラー回転中で非常に大きく変動して いる。半没水のため各翼は水中から次々とスプレーを巻き上げて空中 に飛出し再没入を繰り返す。空中に出た翼は殆ど推力が零だが水中 直下では最大推力を発生するので各翼の推力T_Bは一回転中に0~ T_Bmaxと大きく変動する。つまり、①時間的平均値が船の推力となり、 ②変動成分がプロペラや船体の起振力になる。ここでは、 主に②の変動成分について2つの課題を考察する。(Fig.1) ①翼強度設計:翼変動応力→翼折損の原因・・プロペラ材の金属疲労 ②船体起振力: 翼の変動外力→プロペラ軸変動外力(ベアリング) フォース/モーメント)・・・・・船体起振外力 本論では、SPP模型の翼面歪ゲージによる応力計測とプロペラ動力

計による推力・トルク計測を行い、翼強度とベアリング・フォース/モー メントを考察する。

(参考) SPPの推進性能(Microsoft PowerPoint - bSPP 'yF (sumomo.ne.jp))

Fig.1 SPP船の研究課題

SPP POT movie: https://drive.google.com/file/d/1v17DEhPN_NfFTBg0xspUZYeB_CGMP0w3/view?usp=share_link

SPP装備高速船"Kobe" on board:

https://drive.google.com/file/d/19ZM-uGVB0kP4UI6mUtZ6TTjgivsbZc0r/view?usp=share_link

(filmed by K.Nozawa)

Fig.2 SPP単独模型試験(POT)とSPP高速船プロペラ後流

§1 SPPの翼応力とスラスト、トルクの計測

・流力性能研究と同じSPP動力計(Fig.3)を使用し、スラストT、トルクQ計測と同時に翼応力の計測を行った。

 ・ 金ゲージを貼付したSPPの1 翼が水中最深 部を通過時にパルスが入るようにして 翼回転角位置と翼応力、T、Qのtime history の現象を把握する。

Fig.3 SPP動力計

❶SPP模型(後出Fig.4)

- 流力性能研究で使用したSSPA翼断面の
 3翼のsuper cavitating propellerを使用
- •直径D=0.2m、展開面積比0.5
- ・ピッチ比 p=1.6
- ・作動方法:プロペラ前進速度V=3m/s一定
 で回転数nを変化させて前進率Jを変える。

▶翼歪ゲージ出力⇒曳航台車上パソコンへ ・ゲージはプロペラキャップ部に取り付けた軸端型のスリ ップリングを経て台車に引き上げ、ブリッジボックスを介し て増幅器、AD変換器を経てパソコンに導く(Fig.5) ・ゲージブリッジの組み方は1アクティブゲージ法2線式を 用い増幅器はストレンゲージ式変換器用のブリッジ印加 電圧を内蔵した汎用直流増幅器を使用した。
・翼位置:プロペラ軸に反射マークを貼付し光電式検出器 により翼の回転位置を同時に計測した。パルスはプロペ ラ1回転中、ゲージG4が水中最深部通過時に発生.

翼ひずみ計測系統図

❸模型プロペラと翼面歪ゲージ位置

Model SPP: SSPA type cavitation prop. P/D=1.6

Z=3, Dp=0.2m, ae=0.5

	Blade Number	Z	3
	Diameter (m)	D	0.20
	Pitch Ratio at 0.7R	P/D	1.60
	Boss Ratio	b	0.19
A	Expanded Area Ratio	a _e	0.50
	Skew (m)		0.00
	Rake (deg)		10.00
	Blade Section		SC

Fig.4 模型プロペラと Strain gage位置

SPP Blade stress measurement Gage Output→ Carriage: dynamic strain meter– AD-- CP(1msec)

Shaft end slip ring

WL

Strain gage(G1-G5)

T,Q : POT dynamo

Fig.5 SPP Blade stress 出力 の曳航車台への導出法(模式図)

§2 SPP翼計測応力と実機への換算

①梁理論によるプロペラ翼応力の推定式

Fn:翼面集中荷重と翼根曲げモーメント Fn= $(T_B^2 + (Q_B/\chi R)^2)^{1/2}$ ·····(1) $T_B, Q_B: - 翼_{Blade}$ にかかる推力、トルク 1: 翼長、t: 翼厚 M:ゲージ翼断面(χR)の曲げモーメント , D=2R:直径 M=Fn($\gamma R - \chi R$)COS($\phi_{\gamma R} - \phi_{\chi R}$)∝ T_B •D····(2) Z:ゲージ翼断面G回りの断面係数 I:ゲージ翼の断面慣性モーメント、 η :中性軸までの距離, kp, C: 翼断面により決まる係数 Z=I/ $\eta = [kp/(1-C)][1 \cdot t^2] \propto 1 \cdot t^2 \cdot \cdots$ (3) 貼付ゲージ位置の曲げ応力 $\sigma = M/Z = M/(I/\eta) \propto (T_B \cdot D)/(1 \cdot t^2) \cdot \cdots$ (4)

②相似則による σsの推定法

実機sが模型mと形状が(長さ/厚さ方向に)相似に 作られている場合、(2)式を利用して σ mから σ sを 推定できる。即ち、 σ s/ σ m = [(T_R·D)/I·t²]s/[(T_R·D)/I·t²]m ····(5)

翼数Zの変化(Zm=3, Zs)も考慮して

 $\sigma s = \sigma m (Ds/Dm)(Ts/Tm)(tm/ts)^2(lm/ls)(3/Zs) \cdots (6)$

応力評価半径の翼断面

(4)式は翼の設計応力σ_{design}を満たす翼要目(翼厚、翼幅・・・・)を 相似則的手法で求める方法としてよく使用される。
④ゲージ翼位置と翼応力波形の時系列の詳細観察 Fig.5
④翼は没水❶後、最深没水❷で最大推力を生じそれにより最大曲げ応 力5.9Mpaが発生、⑧空中に出て④⑤の微小振動波形の後、⑤⑥間で 引張応力■が持続。これには推力と逆方向の力(Bが正圧、Fが負圧)⁽²⁾ が必要である。Fig.2の激しい空中螺旋後流のV動画を見ると水中⇔空 中の交替時、翼面F/B上の極めて複雑な圧力移動現象が予想される。

§4 SPPのベアリングフォース・モーメント

① ベアリングフォース/モーメントの定義および一翼T/Qからの計算法

 Bearing Force/Bearing Moment (BF/BM)の定義(次頁Fig.10)
 ①BF/BMはプロペラ推力/トルクの変動成分に基づく流体外力で、軸受(ベアリング)を介して 船体に伝達され船体起振力となる。
 ②一翼についてBF/BMの成分を考えると(9)、(10)式のように計6種類である。
 ①推力T_B(θ)とそれによる曲げモーメントM_B(θ)の垂直成分M_{VB}と水平成分M_{HB}

- **②**翼のトルクカ $F_B(\theta)$ とそれによる垂直成分 F_{VB} と水平成分 F_{HB}
- ③プロペラ全体では(11)式,(12)式のように翼数Zの重ね合わせにより
 - T、Q、M_V、M_H、F_V、F_Hの計6種類となる。

■3翼SPPのBF/BM

①SPPは変動大:1翼の推力・トルクは一回転中でO~Maxと大きく変動する。(Fig.11,Fig.12) ②一翼のスラストT_B(θ)、トルクQ_B(θ)のtime historyの推定:

Fig.12でゲージ翼(赤)は水中最深時($\theta = 180^{\circ}$)で水を最大に掻く時、他2翼は空中にあり推力は零。よって、ゲージ翼もプロペラもピーク値T_bmax=T_pmaxである。また、 $\Theta = 90^{\circ}$ 、270[°]ではゲージ翼は空中にあるためT_B=0である。(プロペラ推力は他翼が水中にあるため零ではない)以上から、一翼のT_B(θ)、トルクカQ_B(θ)はFig.12の実線(空色着色した孤立釣鐘分布)のように推定できる。

③3翼プロペラのBF/BM:

ー翼のスラスト/トルク変動T_B(θ)、Q_B(θ)から、(11)、(12)式より翼数の重ね合わせを経て3翼プロペラのBF/BMが求められる。

F/M of one propeller with 3 blades: $T_{P}(\theta) = T_{B}(\theta - 120^{\circ}) + T_{B}(\theta) + T_{B}(\theta + 120^{\circ})$ $Q(\theta) = Q_{B}(\theta - 120^{\circ}) + Q_{B}(\theta) + Q_{B}(\theta + 120^{\circ})$ $F_{V}(\theta) = F_{VB}(\theta - 120^{\circ}) + F_{VB}(\theta) + F_{VB}(\theta + 120^{\circ})$ $F_{H}(\theta) = F_{HB}(\theta - 120^{\circ}) + F_{HB}(\theta) + F_{HB}(\theta + 120^{\circ})$ $M_{V}(\theta) = M_{VB}(\theta - 120^{\circ}) + M_{VB}(\theta) + M_{VB}(\theta + 120^{\circ})$ $M_{H}(\theta) = M_{HB}(\theta - 120^{\circ}) + M_{HB}(\theta) + M_{HB}(\theta + 120^{\circ})$

Fig.11 スラスト、トルク変動と翼応力変動およびゲージ翼回転関係 (J=1.2, I/D=-0.167)

② SPPのベアリングフォース・モーメントの推定結果と考察

●3翼SPP模型のベアリングフォース・モーメント:

(11),(12)式で計算したBF/BMをFig.13aに示す。

条件:Z=3、D=0.2m、n=12.5rpm

- ・3翼のため一回転に3個のピークが現れている。Blade Frequency : nZ、・・・・
- SPP船は巡航時は船尾が浮上しプロペラ軸は水面上に出るためPOT状態と なるため、今回のBF/BMの結果はSPP船の一般的傾向に近いと考えられる。

2 翼数変化の傾向

BF/BMの3翼、4翼の比較をするため近似的に4翼の計算を行う。

1)4翼SPPの一翼T、Q変動波形の設定条件

・3翼SPPと4翼SPPの全スラストを同一・1翼のT,Q最大ピーク値を3翼時の3/4
 2)3翼と4翼のBF/BMの比較

- ▶3翼と4翼のBF/BM:Tp,Qp,F_v,F_H,M_v,M_Hの計算結果 Fig.13a,b
- ▶変動波形のMax,Mean,Min および見掛けの全振幅 Table1
- ▶3翼と4翼の各変動成分の(3翼の全振幅 Δ_3 に対する)比率 Δ_4/Δ_3
- ・スラストとトルクは約1.07、4翼が7%とやや増加するが大差なし。
- BF/BMの各成分比率Δ₄/Δ₃はF_V:0.29, F_H:0.13, M_V:0.11, M_H:0.30と4翼が 減少する。特に、F_H, M_Vが顕著である。
- ▶SPP船の起振力低減の観点から:4翼が優れていることが分かる。

 Fig.13a,b Bearing force and moment by equations 11 & 12 (3翼、4翼)

 P/D=1.6, J=1.2, I/D=-0.167
 ➡ 3翼から4翼にするとBF/BMがかなり減少

-						
3 麗	τŴ	Q (Nm)	Fv (N)	Fh (N)	My (Nm)	Mh (Nm)
max	16.017	0.904	5.366	-4.464	-0.438	0.527
mean	13.850	0.781	-0.027	-8.601	-0.844	-0.003
min	12.015	0.678	-5.378	-12.073	-1.185	-0.528
∆3(max-min)	4.002	0.226	10.745	7.609	0.747	1.054
4 翼	τŴ	Q (Nm)	Fv (N)	Fh (N)	My (Nm)	Mh (Nm)
max	16.333	0.921	0.600	-8.081	-0.887	0.124
mean	13.848	0.781	-1.003	-8.594	0.849	-0.033
min	12.062	0.680	-2.551	-9.044	-0.806	-0.188
∆4(max-min)	4.271	0.241	3.151	0.963	-0.081	0.311
∆4/∆3	1.067	1.067	0.293	0.127	-0.109	0.295

Table1 3翼と4翼のBF/BMの比較(SPP模型POT Z=3 / Z=4 : Estimated)

5. 結論

水中と空中を翼が回転する極めて特殊な半没水プロペラSSPについて ①プロペラ翼応力/強度、②振動外力となるベアリングフォース/モーメント (BF/BM)を概説した。

①ではPOT時の翼応力を計測し実態を把握、SSP設計法の基礎を纏めた。 ②ではSPPのBF/BMの変動挙動および翼数影響を明らかにした。

これらは前報の"SPP船の推進性能"と併せ、SPP装備船の設計に役立つであろう。

(後記)

本研究の初期、SPP装備船"こうべ"(神戸税関広域監視艇第2代)につき神戸税関殿から乗船とドック時見学の 貴重な機会を得た。著者の体感ではSPP船の乗り心地は良好で、ドック時SPP/舵の顕著な

キャビテーション・エロージョンは見られなかった。SPP船への期待をより深めることが出来た。

参考文献

1) https://ndlonline.ndl.go.jp/#!/detail/R30000001-I000003593619-00

APHydro 2002 : Asia Pacific Workshop on Marine Hydrodynamics in Asia Pacific Maritime Congress : proceedings Hydrodynamic Performance and Exciting Force of Surface Piercing Propeller/ K. Nozawa ; N. Takayama /198

2) 熊井 豊二:船体振動起振力としてのプロペラ Bearing Force,西部造報,22号(1961).